Finite abelian subgroups of the mapping class group
نویسندگان
چکیده
Let S be a closed, smooth, orientable surface of genus 2. The mapping class group M of S (or MCG) is the group of isotopy classes of homeomorphisms of S . In this paper we shall investigate the conjugacy classes of finite elementary abelian subgroups, and more generally the finite abelian subgroups of M . While the general finite subgroup classification is important we focus on the case where G is an elementary abelian subgroup as a tractable case where complete classification methods by standard linear algebra is possible. We note that by finite elementary abelian, we mean G Š C v p Š F v p where Cp is a cyclic group of prime order p , and Fp is the finite field of the same cardinality (we use the latter notation when we want to emphasize the vector space structure of G ). We also consider the abelian case where positive steps can be made toward such a classification. The main result of our work is to describe methods which may be employed to completely classify all elementary abelian actions in a given genus and steps toward a classification of abelian actions. The classification is complex since it involves understanding the representation theory of certain subgroups of symmetric groups, but for a fixed low genus since the symmetric groups are small, we are able to produce very explicit results.
منابع مشابه
1 N ov 2 00 6 Finite abelian subgroups of the mapping class group
The problem of enumeration of conjugacy classes of finite abelian subgroups of the mapping class group Mσ of a compact closed surface X of genus σ is considered. A complete method of enumeration is achieved for finite elementary abelian subgroups and steps are taken toward enumera-tion of finite abelian subgroups.
متن کاملAn explicit formula for the number of fuzzy subgroups of a finite abelian $p$-group\ of rank two
Ngcibi, Murali and Makamba [Fuzzy subgroups of rank two abelian$p$-group, Iranian J. of Fuzzy Systems {bf 7} (2010), 149-153]considered the number of fuzzy subgroups of a finite abelian$p$-group $mathbb{Z}_{p^m}times mathbb{Z}_{p^n}$ of rank two, andgave explicit formulas for the cases when $m$ is any positiveinteger and $n=1,2,3$. Even though their method can be used for thecases when $n=4,5,l...
متن کاملOn non-normal non-abelian subgroups of finite groups
In this paper we prove that a finite group $G$ having at most three conjugacy classes of non-normal non-abelian proper subgroups is always solvable except for $Gcong{rm{A_5}}$, which extends Theorem 3.3 in [Some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable, Acta Math. Sinica (English Series) 27 (2011) 891--896.]. Moreover, we s...
متن کاملFinite $p$-groups and centralizers of non-cyclic abelian subgroups
A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq Z(G)$. In this paper, we give a complete classification of finite $mathcal{CAC}$-$p$-groups.
متن کاملSome combinatorial aspects of finite Hamiltonian groups
In this paper we provide explicit formulas for the number of elements/subgroups/cyclic subgroups of a given order and for the total number of subgroups/cyclic subgroups in a finite Hamiltonian group. The coverings with three proper subgroups and the principal series of such a group are also counted. Finally, we give a complete description of the lattice of characteristic subgroups of a finite H...
متن کاملFuzzy Subgroups of Rank Two Abelian p-Group
In this paper we enumerate fuzzy subgroups, up to a natural equivalence, of some finite abelian p-groups of rank two where p is any prime number. After obtaining the number of maximal chains of subgroups, we count fuzzy subgroups using inductive arguments. The number of such fuzzy subgroups forms a polynomial in p with pleasing combinatorial coefficients. By exploiting the order, we label the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008